Spreadsheet bibliography
Title | For good measure: Structural measures for the improvement of spreadsheet quality and correctness |
---|---|
Authors | Patrick Koch |
Year | 2019 |
Type | Ph.D thesis |
Publication | University of Klagenfurt |
Series | September |
Abstract |
Increasing availability and popularity of end user programming environments has enabled a vast number of people to craft custom solutions for their computation needs. Electronic spreadsheets in particular are commonly used as a programming tool for computerized calculation and modelling. While spreadsheets often fulfil critical tasks, they are mostly developed by domain experts with little programming experience. Those users are seldom aware of quality issues in their spreadsheet programs that may nevertheless lead to faults with significant adverse effects. In recognition of this problem, researchers have worked over the last decades to introduce a variety of techniques to avoid, find, and fix quality issues and faults within spreadsheets. In particular, combinations of visualization and static analysis approaches like spreadsheet smells demonstrate promising results by providing easy to process feedback for users about detected problems. Prominent, established approaches are, however, limited in their effectiveness due to a number of shortcomings. They do not infer existing structural information that is inherent to spreadsheet programs in a consistent manner, make seldom use of such structural properties, and are generally constrained to focus on a limited set of detectable issues. In the course of this thesis, we therefore present a selection of measures that address the stated drawbacks:
In summary, this work improves means of safeguarding spreadsheet quality and correctness by introducing well-defined measures of structural spreadsheet properties and demonstrating the beneficial uses thereof. Such structure metrics can also be used in a presented methodology for fault prediction in spreadsheets that shows promising results and lends itself to inclusion in common spreadsheet processors. |
Full version | Available |
Sample |
Example spreadsheet of a car loan
![]() We have an example spreadsheet which calculates a car loan. The Value View, the default representation of cells within a spreadsheet environment, is given on top. Based on this perspective, the example makes a straightforward impression. However, when investigating the Formula View, as given in the bottom, it becomes apparent that the end result depends on a mesh of interwoven and in part inconsistent calculations. Such calculation structures are hardly uncommon and emphasize the need for sophisticated tools that assist end users in maintaining the quality and correctness of their spreadsheets. Given the circumstances outlined above, it is of little surprise that spreadsheets, even when used for critical tasks, are often error prone. [Note: To further emphasise the point, even this simple example contains an error: The Value View and the Formula View for column E are inconsistent.] |